GR2 @ mib stato delle attività

O.Cremonesi

CdS - 7 Luglio 2009

Gr.II: Fisica Astroparticellare @ Milano Bicocca

- Fisica del neutrino
- Doppio decadimento beta
 CUORE,CUORE0, GERDA
- Misure cinematiche di m,
 - MARE-RD
- Neutrini da acceleratore
 BENE

Astronomia Spaziale
► Antimateria, Raggi cosmici carichi
► AMS2

- Astronomia y da terra
 - ► MAGIC

				ms2	ene	uore	erda	nagic	lare	ot2		 IV/	V	БС	altro		
Andreotti Erica	Ass	Assegnista	CSN II	a	q	20	g	E	E 80	σ	•	 IV	v	г.э.	aitro	100	
Bellotti Enrico	Ass	Prof. Ordinario	CSN II			_0	100									100	
Boella Giuliano	Ass.	Prof. Ordinario	CSN II	60								20			20	80	
Bonesini Maurizio Giorgio	Dipendente	Primo Ricercatore	CSN V		10						20		50	40		120	
Brofferio Chiara	Ass.	Prof. Associato	CSN II		-	40			40		-		20			100	
Capelli Silvia	Ass.	Assegnista	CSN II			60							40			100	
Carrettoni Marco Andrea	Ass.	Dottorando	CSN II			80			20							100	Ξ
Cattadori Carla Maria	Dipendente	Primo Ricercatore	CSN II				80						20			100	
Clemenza Massimiliano	Inc. coll. tecn.	Tecnico Categoria D	CSN II			60							40			100	
Consolandi Cristina	Ass.	Dottorando	CSN II	100												100	
Cremonesi Oliviero	Dipendente	Dirigente di Ricerca	CSN II			50			40				10			100	
Ferri Elena	Ass.	Dottorando	CSN II			20			80							100	
Fiorini Ettore	Ass. Senior	Prof. Ordinario	CSN II			70			20				10			100	
Foggetta Luca Gennaro	Ass.	Ricercatore	CSN II			20			80							100	_
Gervasi Massimo	Ass.	Prof. Associato	CSN II	70												70	
Gironi Luca	Ass.	Dottorando	CSN II			80							20			100	
Giuliani Andrea	Ass.	Prof. Associato	CSN II			30			70							100	
Maiano Cecilia Giovanna	Ass.	Dottorando	CSN II			80			20							100	
Memola Elisabetta	Ass.	Assegno di Ricerca	CSN II	100												100	
Nones Claudia	Ass.	Assegnista	CSN II			80			20							100	
Nucciotti Angelo	Ass.	Ricercatore	CSN II			50			50							100	
Pattavina Luca Maria	Ass.	Dottorando	CSN II			80			20							100	
Pavan Maura	Ass.	Ricercatore	CSN II			50			30				20			100	
Pensotti Simonetta	Ass.	Ricercatore	CSN II	100												100	
Pirro Stefano	Dipendente	Ricercatore	CSN V			50							50			100	
Previtali Ezio	Dipendente	Primo Ricercatore	CSN II			40			20				40			100	
Rancoita Pier Giorgio	Dipendente	Dirigente di Ricerca	CSN II	100												100	
Salvioni Chiara	Ass.	Dottorando	CSN II			20			80							100	
Schaeffer David	Ass.	Borsista Post doct.	CSN II			80			20							100	
Treves Aldo	Ass.	Prof. Ordinario	CSN II					50								50	
Zanotti Luigi	Ass.	Prof. Associato	CSN II			60							40			100	
				5.3	0.1	11.2	1.8	0.5	6.9	0						25.8	

			Gruppo	ams2	bene	cuore	gerda	magic	mare	dot2	I	111	IV	v	P.S. altro	
In scadenza entro il 20	09															
Grandi Davide	Dip. a tempo determinato	Tecnologo Borsista	2	100												100
Tacconi Mauro	Associato	Universitario	2	100												100
NON RICONOSCIUTI																
Canestrari Rodolfo	CF		5					40								40
Rusconi Chiara	CF		2			50			50							100
DA ASSOCIARE																
Maura Pilia	CF	Dottorando	2					100								
Nicola Sartore	CF	Dottorando	2					100								
?. Bonnoli	CF	Dottorando	2					100								
				2	0	0.5	0	3.4	0.5	0						6.4

Kraft Bermuth Saskia	Associato	Assegnista	2		20		80		100
Martinez Perez Maria	Associato	Borsista Post doct.	2		80		20		100
Pedretti Marisa	Associato	Assegnista	2		80		20		100
Ghigo Mauro			5			40			40
Pareschi Giovanni			5			40			40
Tavecchio Fabrizio			5			50			50
				0	0 1.8	0 1.3	1.2	0	4.3

	5.3	0.1	11.2	1.8	0.5	6.9	0	25.8
	2	0	0.5	0	3.4	0.7	0	7.4
TOTALE	7.3	0.1	11.7	1.8	3.9	7.6	0	33.2

Tecnologi 2010

Nome	Posizione	Qualifica		AMS2	CUORE	MARE		V	Tot.
Arnaboldi Claudio	Associato	Assegnio di ricerca U	2		50	40		10	100
D'Angelo Pasquale	Ass. Senior			10			90		100
Giachero Andrea	Associato	Assegnio di ricerca	CSN II		80	20			100
Pessina Gianluigi Ezio	Dipendente	Primo Tecnologo	CSN II		40	20	30	10	100
Sisti Monica	Ass. con inc. coll. tecn.	Tecnico Categoria D	CSN II		50	50			100
				0.1	2.2	1.3			3.6

Ardito Raffaele	Associato	Assegnista	2	100	100

Tecnici 2010

Nome	Posizione	Qualifica		AMS2	CUORE	MARE	DOT2	I	Tot.
1 Branzoni Lorella	Ass. con inc. coll. tecn.	Tecnico Categoria C	CSN II				50	50	100
2 Callegaro Cristiano	Ass. con inc. coll. tecn.	Tecnico Categoria C	CSN II		50	50			100
3 Ceruti Giancarlo	Dip. a tempo indetermina	atcCollaboratore Tecnico E.R	. CSN II		50	50			100
4 De Lucia Antonio	Ass.	Tecnico Categoria C	CSN II		40	30		30	100
5 Gaigher Roberto	Dip. a tempo indetermina	atcCollaboratore Tecnico E.R	. CSN II		50	50			100
7 Perego Maurizio	Dip. a tempo indetermina	atcCollaboratore Tecnico E.R	. CSN II		50	50			100
8 <mark>Andrea Passerini</mark>	ass. tecnica	tec. Univ	CSN II	20					
9 <mark>Alessandro Bau'</mark>	ass. tecnica	tec. Univ	CSN II	20					
		F	TE Totali	0.4	2.4	2.3	0.5		5.6

gr2@mib; anagrafica per ruolo

gr2@mib: anagrafica per esperimento

Gr.II: Richieste

	MI		ME		CON		INV		PUB/MAN		SEM		Totales	segnazioni
Dotazioni 10	22		25		21		10		10		2		90	
Dotazioni 09	23	21	26.5	13.5	21	6.5	10	10.5	11	2	2.5	1	94	54.5
Dotazioni 08	27.5	25.5	29	16.5	21.5	8	25	6	31	9.5	2.5	1	136.5	66.5
Dotazioni 07	27.6	15.5	27.5	21	21	3.5	21	9.5	22	16	2	1.5	121.1	67
	N/I		ME		CON						C A		Totalo	cognazioni
AMS2 40									IVIAN/TRA		0.A.			segnazioni
	11	5	40.0	24	22.5	22.5	7.0				50	10	140.5	70 5
AWS2 09	11 5	5	44	24	20.4	20.5	70	<u> </u>			25	19	145.0	12.0
AIVI32 00 AMS2 07	11.0	5	40.0	0.0	30.1	20.5	7.5	3	20	0	20	6.5	120.2	21
AIVI32 07		J	40	10.5	40	3	0.0	3	2.0	U	30	0.5	133.3	34
CUORE 10	155		61.5		165.5		13		28		232		655	
CUORE 09	194	120	42	35	178	83	56	18	20		286	106	776	362
CUORE 08	156	98	55	46	102	54	27.3	11	20		938	584	1298.3	793
CUORE 07	167	95.5	69	34.5	162	59	42	10			861	574	1301	773
I						4						6.5		10.5
MARE-RD 10	20		15		105		5						145	
MARE-RD 09	20	8	15	7.5	121	75	6	6	10	5	341		513	101.5
MARE-RD 08	20		30		90		43.5				133		316.5	0
MARE 07	10	4.5	30	6.5	86	10	37				215	40	378	61
	0		_		46		45						44	0
	0	7	5	4	64	12		46	44	4	244		44 540 5	74
	0	7	3	4	40	10	04.0 420 E	40	11		341		510.5 470.5	11
	1	/ 	1	5	10	15	130.0	19			40	7	1/0.5	40
GERDA UI	12.5	0	0	0	5	4	114.5	03			10	1	150	00
MAGIC 10	2		3										5	
MAGIC 09	2	2	3	2									5	4
	2		2		4								6	
	2	1	3	2									5	2
	4		J	_									3	<u> </u>
2010	220		158		352.5		50.5		38		290		1109	
2009	260	164	136.5	88	414.5	201	161.5	80.5	52	8	1028.5	126	2053	668.5

Fisica del Neutrino

Present Bounds

Combined informations: **cosmology single** β -decay **double** β -decay

Sensitivity (eV)

Method	Present	Future
<u>Cosmology</u>	0.7-1.0	0.1
<u>ββ(0v) decay</u>	0.5	0.05
B-decay	2.2	0.2

Strumia-Vissani hep-ph/0503246

Present situation

Heidelberg/Moscow: ⁷⁶Ge

- 5 HP-Ge crystals, enriched to 87% in ⁷⁶Ge total active mass of 10.96 kg ⇒ 125.5 moles of ⁷⁶Ge
- run from 1990 to 2003 in Gran Sasso Underground Laboratory
- total statistics 71.7 kg×y 820 moles×y
- main background from U/Th in the set-up b≈0.11 c/keV/kg/y at Q_{ββ}
- lead box and nitrogen flushing of the detector
- digital Pulse ShapeAnalysis(PSA)

1990 - 2001 data exposure = 35.5 kg×y SSD $\tau_{y_2}^{0v} > 1.9 \times 10^{25}$ years $\langle m_{\nu} \rangle < 0.35$ eV (0.3 - 1.24 eV)

H.V.Klapdor-Kleingrothaus et al., Eur. Phys. J. A12 (2001)

H.V.Klapdor et al.: ⁷⁶Ge 0v-DBD evidence

First claim in January 2002(Klapdor-Kleingrothaus HV et al. hep-ph/0201231) with a statistics of 55 kg y and a 2.2-3.1 statistical significance \rightarrow strong criticism claim confirmed in 2004 with the addition of a significant (~1/4) new statistics and improved in the following years

1990 - 2003 data, all 5 detectors exposure = 71.7 kg×y $\tau_{\gamma_2} = 1.2 \times 10^{25}$ years $\langle m \rangle = 0.44$ eV

H.V.Klapdor-Kleingrothaus *et al.*, Phys. Lett. B 586 (2004)

H.V.Klapdor-Kleingrothaus *et al.*, Phys. Scr. T127 (2006) 40– all forture experiment will certainly have to cope with this result

HM claim: status

Faessler et al, arXiv:0810.5733v2 [hep-ph] 6 Mar 2009

Next generation 0v-DBD experiment goals

- sensitivities of few 0.01 eV on $\langle m_{v} \rangle$
- hierarchy problem solution
- good chances to observe $\beta\beta(0\nu)$ (LNV, Majorana ν 's)
- confirmation/rejection of the ⁷⁶Ge result

confirmation :	sensitivities of few 100 meV on 〈 m 〉, are enough
	check different isotopes
rejection :	much better sensitivities on $\langle \boldsymbol{m} \rangle$ must be achieved

How?

- promote as many as possible experiments on different isotopes
- reduce uncertainties in nuclear matrix F_{N}
- Improve all parameters determining sensitivity

increase isotopic abundance by enrichment reduce background by:

$$\sum (\tau_{1/2}^{0\nu}) \propto \epsilon \cdot \frac{a.i.}{A} \sqrt{\frac{Mt_{meas}}{\Delta E \cdot bkg}}$$

increase experimental mass

material selection and proper handling choosing proper technique using signatures improving energy resolution

Expectations

The challenge ...

⁷⁶Ge controversy: why?

- Low statistics of claimed signal hard to repeat measurement
- Background level and model uncertainty
- Unidentified lines
- Insufficient auxiliary handles

Hierarchy problem: background reduction

- To start exploring the inverted hierarchy region: 1-10 counts / y ton
- To cover the inverted hierarchy region: 0.1 -1 counts / y ton

Goal: 1 count/ton/y

- ββ(2ν)
- natural occurring radioactive materials
- neutrons
- long-lived cosmogenics

Next generation 0v-DBD experiment

As long as incomplete list

Isotope	Experiment	Principle	Mass	Lab
	Gerda	ΔE , N-site tag,	18-40 kg	LNGS
		LAr shield		
⁷⁶ Ge	Majorana	ΔE , N-site tag	30+30 kg	SUSEL
		Cu shield		
	MaGe/GeMa	See above	~1ton	DUSEL/LNGS
¹³⁰ Te*	CUORE	ΔE	204 kg	LNGS
¹⁵⁰ Nd	SNO+	Size/Shielding	56 kg	SNOLab
¹⁵⁰ Nd or ⁸² Se	SuperNEMO	Tracking	100-200 kg	Canfranc/Frejus
	EXO	Tracking	200 kg	WIPP
¹³⁶ Xe	EXO	Ba Tag	1-10 t	DUSEL
		Tracking	1 ton	
	Xmass	Self-Shielding	1-10 ton	
¹⁰⁰ Mo	Moon	Tracking		ОТО
⁴⁸ Ca	CANDLES	Calorimeter		KAMIOKA

Many other projects but still at the level of proposal

Status of future projects

Experiment	Isotope	Isotope mass (kg)	Т _{1/2} (у)	<m<sub>v></m<sub>	Data taking Start	Status
CUORE	¹³⁰ Te	203	2.1 x 10 ²⁶	0.03 – 0.07*	2012	Construction
GERDA I	⁷⁶ Ge	17.9	3 x 10 ²⁵	0.2 – 0.5*	2009	Construction
GERDA II	⁷⁶ Ge	40	2.0 x 10 ²⁶	0.07 – 0.2*	2011	Funded
Majorana	⁷⁶ Ge	30-60	1.1×10^{26}	0.1 - 0.3*	2011	Funded R&D
EXO-200	¹³⁶ Xe	200	6.4 x 10 ²⁵	0.2 – 0.7*	2009	Construction
SuperNEMO	⁸² Se	100	2.1×10^{26}	0.05 – 0.09*	2011	R&D
SuperNEMO	¹⁵⁰ Nd	100	1.0×10^{26}	0.07 – 0.2*	2011	R&D
CANDLES	⁴⁸ Ca	0.35		0.5	2009	Funded R&D
MOON II	¹⁰⁰ Mo	120		0.09 – 0.13		R&D
DCBA	¹⁵⁰ Nd	20				R&D
SNO+	¹⁵⁰ Nd	50-500				R&D
COBRA	¹¹⁶ Cd	420				R&D
COBRA	¹³⁰ Te	420				R&D

Comparison of effective livetimes (rescaled on the central F_{N} values)

		CUORE	GERDA I	GERDA II	Majorana	EXO-200	SuperNEMO
		2.10E+026	3.00E+025	2.00E+026	1.10E+026	6.40E+025	2.10E+026
CUORE	2.10E+026	2.10E+026	7.78E+026	7.78E+026	7.78E+026	6.03E+026	2.36E+026
GERDA I	3.00E+025		3.00E+025	3.00E+025	3.00E+025	2.32E+025	9.08E+024
GERDA II	2.00E+026		4	2.00E+026	2.00E+026	1.55E+026	6.05E+025
Majorana	1.10E+026			×	1.10E+026	8.52E+025	3.33E+025
EXO-200	6.40E+025					6.40E+025	2.50E+025
SuperNEMO	2.10E+026	Sensit	tivities -	Eposolo		V:0010	2.10E+026
		JUIJI		raessie	er et al, ar	VIA:00TO	'2/22/5 [U
				ph]			

CUORICINO results

- total statistics 18 kg \times y
- average energy resolution FWHM $\Delta E = 7.5$ keV at $Q_{\beta\beta}$ ($\sigma_{E}=1.3\%$)
- anticoincidence applied to reduce surface U/Th background and external γ 's
- background level: b≈0.18 ± 0.01 c/keV/kg/y @ Q_{ββ}
 - 30% ± 10% ²⁰⁸TI (cryostat contamination)
 - 20% ± 10% TeO₂ surfaces (α contaminations)
 - 50% \pm 10% Cu surfaces (β contaminations)

Statistics [yr * kg ¹³⁰ Te]	Q value [keV]	Limit [yr] 90% C.L.
15.53	2530	3.1 10 ^{24*}
15.53	2527.2	2.8 10 ²⁴
18	2527.2	2.94 10 ²⁴

* C. Arnaboldi et al., PRC 78 (2008) 035502

$\langle m_{\mu} \rangle \leq 0.20 \div 0.68$

NME from the review table of QRPA calculation in Rodin et al Nucl. Phys. A 766,107 (2006) and nucl-th:0706.4304v1

stopped in June 2008 and disassembled

CUORE

CUORE

<u>Cryogenic Underground Observatory for Rare Events</u>

 Closely packed array of 988 TeO₂ crystals 5×5×5 cm³ (750 g) 741 kg TeO₂ granular calorimeter 600 kg Te = 203 kg ¹³⁰Te

CUORE (2)

Large international Collaboration

I NL GB - US- CHINA

Good control of the background

- Dedicated underground setup
- CUORICINO

Operated @ LNGS

- Special cryostat built with selected Materials
- Cryogen-free dilution refrigerator
- Shielded by several lead and PET layers

Approved in fall 2004

Under costruction since 2005

- 1000 TeO₂ crystals funded by INFN and DoE: delivery started end 2008
- The first CUORE tower (CUORE-0) will be operated in the CUORICINO setup

В	D	T _{1/2}	<m_>> </m_>
c/keV/ton/y	keV	10 ²⁶ y	meV
10	5	2.1	19-100

5 y sensitivity

Eventi recenti

March 2009

- 14 Copper delivery: available NOSV Cu from NDA accepted. 6 weeks needed for delivery (end of april)
- 13 stop CCVR
- 16 delivery di OF-Cu PO 1016/2008-job no. 14303
- 19 Cu welding samples delivered @ SIMIC
- 19 first 26 INFN crystals leave shanghai
- 25/26 expected CD2/3
- 30 start TTT cooling

April 2009

6 AQ earthquake

- 29 26 crystals arrive to Italy
- 30 CSN Cu delivered @ SIMIC and LNGS

May 2009

- 4-5 CD2/3 @ Washington
- 6 arrival of first 26 CUORE crystals @ LNGS (1st batch)
- 7 LNGS CS meeting @ Roma
- insertion of 26 crystals in psa
- arrival of 36 crystals in Italy

Giugno 2009

- 4 36 crystals arrive @LNGS (2nd batch)
- 23 32 crystals arrive @LNGS (3rd batch)

DUE IMPORTANTI SCADENZE

ENTRO LA FINE DEL 2009

ASSEMBLAGGIO E TEST SISTEMA CRIOGENICO

- Edificio (analisi sismica)
- Unita' refrigerante
- Criostato
- Sistema di sospensione
- Strumenti di assemblaggio

CUORE0

- Approvvigionamento Cristalli
- **Lavorazione** e pulizia rame
- Stoccaggio parti
- Struttura ed assemblaggio rivelatore

CUORE-0

CUORE-0 = first CUORE tower to be installed in the CUORICINO dilution refrigerator (hall A @ LNGS)

Motivations

High statistics test of the many improvements/changes developped for the CUORE assembly procedure:

- gluing
- holder
- zero-contact approach
- Wires

• ...

CUORE demonstrator: expected

background in the DBD and alpha energy regions reduced by a factor 3 with respect ro CUORICINO

0.07 counts/keV/kg/y

Powerful experiment: it will overtake soon CUORICINO sensitivity

Working Groups Structure

Working Group	Working Group Coordinators
	Ioan Dafinei
Crystals	Rick Norman
Single Module	Andrea Giuliani
Assembly	Chiara Brofferio
Cryogenics	Angelo Nucciotti
	Carlo Bucci
Infrastructures	Richard W. Kadel
	Ezio Previtali
Radioactivity	Rick Norman
	Gianluigi Pessina
Electronics	Frank Avignone
	Marco Pallavicini
Data Acquisition	Yuri Kolomensky
Physics Data Analysis	Maura Pavan
Hall C Activities	Stefano Pirro

Technical Responsabilities	Responsible	
Integration	Marco Olcese	
Software Development	Marco Pallavicini	
	Andrea Giuliani	
CUORE0	Frank Avignone	

Stato Working Groups

Working Group	Status			
Crystals	Production started. QA + QC			
Assembly	Detector design finalization. Assembly line finalization. PSA construction.			
Cryogenics	Cooling unit contruction. FCS design. Cryostat finalization and Construction. Seismic analysis.			
Infrastructures	Services and Clean room bids finalization. Lifting platform. CLS. Integration items			
Radioactivity	Crystal QA. Material(structure, process) radio-quality assessment.			
Electronics	Design finalization and prototyping.			
Data Acquisition	HW & SW testing			
Physics Data Analysis	Hall C. CUORICINO, Hall A			
Hall C Activities	CCVR's			
Integration	Layout design. Cryostat commissioning			
Copper	Copper management. CUORE0 production (started). CUORE0 cleaning (started)			

Working Groups Structure: equipments

Activity	WG	Reference	People (Major contributions)
Crystals production	CRYS	ID	E.Previtali,M.Laubenstein,S.Nisi,Y,Zhu,M.Clemenza,E.B.Norman
Crystal Validation	CRYS	SP	C.Nones, C.Rusconi
NTD production	SMD	RM	J.Beeman, L.Ejzak, E.Haller
NTD characterization	SMD	AG	S.Pirro,C.Nones,C.Rusconi,M.Barucci
Heaters sel.&char.	SMD	ChB	C.Andreotti,I.Bandac
Tower Structure	CAW	DO	P.Gorla,L.Tatananni,D.Orlandi
Detector Structure	CAW	ChB	L.Tatananni,D.Orlandi
Crystal gluing	CAW/SMD	DO/MP	L.Tatananni,C.Salvioni,C.Rusconi,C.Bucci,P.Gorla,S.Morganti
Detector wiring	CAW	ChB	G.Pessina,C.Cosmelli
Copper Procurement	Cu	MS	E.Previtali
Copper Machining	Cu	MS	E.Previtali,E.Bissiato,R.Mazza
Copper cleaning	RADIO	VP	V.Rampazzo,A.DeBiasi,E.Previtali, M.Sisti
PTFE Procurement	RADIO	EP	M.Clemenza, P.Gorla
Cooling Unit	CRYO	AN	G.Frossati,A.deWaard,F.Alessandria
Cryostat	CRYO	AN	F.Alessandria,R.Ardito
DCS	CRYO	KH	S.Sangiorgio,L.Ejzak,K.Kriesel
Top wiring	CRYO	MB	G.Pessina,A.Nucciotti
LT Pb Shields	CRYO	AN/MO	A.Alessandria,M.Olcese,D.Torazza,R.Cereseto
Suspension	CRYO	MO	R.Cereseto, D.Torazza
Cryostat Lifting System	CRYO	FR	S.Zucchelli, M.Guerzoni, C.Crescentini
Building	HUT	СВ	C.Zarra
Infrastructures	HUT	СВ	LNGS staff
Room T radiation shields	HUT/RADIO	СВ	E.Previtali,L.Gironi
RT Shields movement system	h HUT	СВ	D.Orlandi,L.Tatananni
Clean Room Design	HUT	СВ	R.Lafever
Anti-Rn system	HUT	RWK	T.Bloxham
FEE design and prototyping	FEE	GP	C.Arnaboldi,A.Giachero,P.Musico,M.Cariello
FEE production	FEE	FA	C.Rosenfeld,HZ.Huang
Boards Testing	FEE	HZ.Huang	S.Trentalange,X.Liu
Data Acquisition	DAQ	MP	S.DiDomizio,A.Giachero,L.Canonica

Working Groups Structure: procedures

Activity	WG	Reference	People (Major contributions)
Assembly protocols	CAW	SM	C.Brofferio,E.Previtali,M.Sisti,I.Dafinei
Setup material essay	RADIO	EP	C.Maiano,L.Pattavina,M.Laubenstein,S.Pirro,S.Nisi,L.DiVacri
Physics Data Analysis	DA	MauP	S.Capelli,M.Carrettoni,M.Martinez,C.Tomei,L.Kogler,A.Bryant
MC setup simulations	DA	MauP	L.Gironi,S.Capelli,K.Kazkaz
Muon Studies and simulations	RADIO	EG	L.Kogler,F.Bellini,L.Gironi and many others
			M.Vignati,M.Carrettoni,M.Martinez,S.Didomizio,E.Guardincerri,L.Kogler,
Software Development	SW	MP	A.Bryant,R.Faccini,F.Bellini,C.Tomei
Vibrational tests	CAW	RA/SM	C.Gargiulo
			S.Pirro,C.Martinez,L.Gironi,M.Vignati,C.Salvioni,M.Pedretti,A.Giachero,
Bolometric Bkg studies	RADIO	PG	S.Capelli,M.Dolinski,M.Martinez,L.Canonica and many others
			C.Salvioni,M.Pedretti,C.Nones,A.Giuliani,S.Sangiorgio,I.Bandac,
Tower bolometric validation	CAW	PG	M.Dolinski,M.Vignati,F.Bellini

Integration and assembly: design, tools and operation

Activity	WG	Reference	People
RT Shields Installation	HUT	CB	
Cryostat Installation	CRYO	AN	L.Taffarello
Cryostat Commissioning			
Tower Assembly	CAW	SM	C.Brofferio, P.Gorla, D.Orlandi, L.Tatananni
PSA	CAW	MD	RW.Kadel,E.Previtali,S.Zucchelli,C.Zarra,L.Pattavina
Tower storage & movement		SM/CG	
Tower Installation		SM/CG	

TOOLS and PERSONNEL

LNGS ACTIVITIES

Task	Responsible
PSA	M.Deninno
CLEAN ROOMS	M.Balata
HALL C measurements	S.Pirro
HALL A measurements	
Material storage and movement	
Setup parts management	
Lab's maintenance	
Parts cleaning	
CUORE0	A.Giuliani/F.Avignone
Cryostat Commissioning	A.Nucciotti
HUT	C.Bucci

Shifters could be a solution.

Copper (production and) cleaning

DEADLINE: CUORE-0

Tower drawing finalized **CUORE0 production started** Copper stored @ Baradello and moved to/from Milano/LNL

- Baseline cleaning recipe TECM
- Problems with cleaning validation run (Three Towers)
- **CUORE0 tower cleaning started**: 5 months (until half november)

In the meanwhile:

- Plants and devices finalization
- Process optimization
- Frames masking
- Operational tests for different parts

Three Tower Test

- Test to finalize copper surface treatment with respect to radiopurity constraints
- Three towers whose copper has been subject to 3 different surface treatments:
 - 1. Plasma Cleaning
 - 2. Chemistry
 - 3. Polyethylene sheets
- 3 plane of 4 TeO2 crystals each
- Crystals completely reprocessed according to CUORE standards

DEADLINE: CUORE-0

3 main parts: glue dispenser, XYZ positioning, automation

Characterization of separate parts proceeds in parallel Design optimization and ergonomic studies. Drawings.

Expected deadline at last meeting: End 2009 ⇒ Spring 2010

Main difficulties

- Earthquake (indirect) effects
- Over-commitments
- People interaction

After this phase

- Integration and drawings finalization.
- Construction and installation
- Operational tests and training

Linea di assemblaggio

Name	Start	Finish	1
EAssembly	1/7/09 8:00 AM	4/20/10 5:00 P	
🗆 Mechanical Glove Boxes	1/7/09 8:00 AM	4/20/10 5:00 P	
Ergonomic studies	1/7/09 8:00 AM	9/29/09 5:00 PM	
GB's integration	9/30/09 8:00 AM	10/27/09 5:00	
Drawings and order release	10/28/09 8:00 AM	11/24/09 5:00	
Construction	11/25/09 8:00 AM	2/2/10 5:00 PM	
Installation in HallC Clean Room	2/3/10 8:00 AM	2/23/10 5:00 PM	
Operational tests and training	2/24/10 8:00 AM	4/20/10 5:00 PM	
⊟Gluing box	3/2/09 8:00 AM	1/22/10 5:00 P	
⊟Glue management	3/2/09 8:00 AM	8/14/09 5:00 P	
Fishman Dispenser Test	3/2/09 8:00 AM	3/13/09 5:00 PM	
Loctite Dispenser Test	6/6/09 8:00 AM	7/17/09 5:00 PM	
Syringe Filling tests	7/20/09 8:00 AM	8/14/09 5:00 PM	
⊟Automated system	6/15/09 7:00 AM	1/11/10 5:00 P	
Jenny XYZ Test	6/15/09 7:00 AM	8/7/09 5:00 PM	
ABB Robot Test	7/13/09 8:00 AM	9/18/09 5:00 PM	
Camera Test	8/31/09 8:00 AM	10/9/09 5:00 PM	
Z–Pos Design	6/29/09 7:00 AM	8/7/09 5:00 PM	
Z-Pos protorype Costruction	8/10/09 8:00 AM	10/2/09 5:00 PM	
Layout Design	6/15/09 8:00 AM	10/2/09 5:00 PM	
Assembly & Integration	10/12/09 8:00 AM	12/4/09 5:00 PM	
⊟Table	6/15/09 8:00 AM	12/25/09 5:00	
Design	6/15/09 8:00 AM	10/2/09 5:00 PM	
Order	10/5/09 8:00 AM	11/27/09 5:00	
Construction	11/30/09 8:00 AM	12/25/09 5:00	
Global Test	12/7/09 8:00 AM	1/11/10 5:00 PM	
⊟Glove Box	6/15/09 8:00 AM	12/25/09 5:00	
Design	6/15/09 8:00 AM	11/27/09 5:00	
Construction	11/30/09 8:00 AM	12/25/09 5:00	
Tunnel Installation	12/28/09 8:00 AM	1/22/10 5:00 PM	
Operational tests and training	1/25/10 8:00 AM	4/16/10 5:00 PM	

CUORE0

Topics	Subtopics			20	09	NOV	DEC				20	10			
CDVCTALC	REA DV	JUL	AUG	SEP	OCI	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG
CRYSTALS	READY														
	Cleaning procedure defined														
HEATERS	Packaging procedure defined														
	Procurement of material														
	Cleaning and packaging														
THERMISTORS	Preparation from 34C wafer														
	Cleaning and packaging														
	Characterization														
	Column production														
	Frame production														
CU DIECES	Cable rail production														
CU PIECES	Screws														
	Thermal shield design														
	Thermal shield construction														
Cu CLEANING	Cleaning / packaging of all the pieces														
	Clean 4 frames and 8 columns for test														
	Package 1/3 thermal shield for test														
	Production														
	Cleaning preparation														
PTFE PIECES	Closning														
	Procurement of 2 plane pieces														
	Production of DENL Curibbon and 715 boards														
	Cleaning apprentice of DEN. Cu														
WIRING (TOWER)	Cleaning preparation of PEN-Cu														
	Clean sample for bonding tests														
	Cleaning of all PEN-Cu ribbons														
	Realization of the connector box														
	Design of the Cu thermalization clamps														
	Realization of the Cu clamps														
	Desing of the box fitting														
WIRING (CRYOSTAT)	Realization of the box fitting														
	Design of Cu board for MC thermalization														
	Realization of Cu boards														
	Ribbon endings														
	Installation in cryostat														
	2 cable rail segments ready for test														
	Set for 2 planes ready for test														
ASSEMBLY	1/3 thermal shield ready for test														
	Miscellaneous for glove boxes														
	Test of assembly operation														
	Glove boxes production														
	Test of the assembly line														
	Fake crystals for bonding tests														
	Cleaned Cu-DEN for bonding tests														
	Panding antimization														
	Assemble line made in LNCC														
	Assembly line ready in LNGS														
GLUING	Dispenser														
	2-pos														
	Cartesian robot														
	Antropomorphic robot														
	Assembly and test														
	Ready for gluing														
BOREXINO CLEAN ROOM	Maintenance														
Selexing CLEAN ROOM	Lay-out														
CENTERING SYSTEM															

Criostato

DEADLINE: cryostat installation and commissioning

Full cryostat design finalization Cryostat construction and delivery

2 (sequential) phases:

- 3 external thermal shields
- 3 internal thermal shields

Main difficulties

- Seismic analysis
 - Laws interpretation
 - Effects evaluation
 - Design constraints
- Limited resources
- \Rightarrow Vessel constructions started
- ⇒ Plates construction delayed

Cryostat (march schedule)

				_					
Name	Duration	Start	Finish	Qtr 1	, 2009 Feb Mar	Qtr 2, 2009 Apr May Jun	Qtr 3, 2009 Jul Aug Sep	Qtr 4, 2009 Oct Nov Dec	Qtr 1, 20 Jan Fel
Cryostat construction	215 days?	2/2/09 8:00 AM	12/28/09 5:00 PM		÷				,
Contract signed	1 day?	2/2/09 8:00 AM	2/2/09 5:00 PM		2/2				
∃External Vessels (OVC+40K+IVC)	186 days?	3/13/09 8:00 AM	12/28/09 5:00 PM		-				•
⊡Top plates	75 days?	4/2/09 8:00 AM	7/15/09 5:00 PM	2000			•••		
⊞material procurement (at Simi¢)	32 days?	4/2/09 8:00 AM	5/15/09 5:00 PM	1000				SIN	/IIC
■Stainless steel validation	15 days	5/18/09 8:00 AM	6/5/09 5:00 PM						
	12 days?	4/30/09 8:00 AM	5/15/09 5:00 PM	1000					
	25 days	6/8/09 8:00 AM	7/10/09 5:00 PM	200		-		CUORE	
Dimensional tests	3 days?	7/13/09 8:00 AM	7/15/09 5:00 PM	1000			1		
⊟Shields	145 days?	3/13/09 8:00 AM	10/30/09 5:00 PM		-			-	
⊞material procurement (at Simi¢)	17 days?	3/13/09 8:00 AM	4/6/09 5:00 PM	1000	-	•			
■EBW company selection	1 day?	4/30/09 8:00 AM	4/30/09 5:00 PM	2000		U			
⊞EBW tests	28 days?	5/1/09 8:00 AM	6/9/09 5:00 PM	2000					
	1 day?	4/2/09 8:00 AM	4/2/09 5:00 PM			• 1			
■Bottom forming	42 days?	4/7/09 8:00 AM	6/3/09 5:00 PM			÷			
Plates preparation	15 days?	4/7/09 8:00 AM	4/27/09 5:00 PM	1000					
Bottoms production off-site	20 days	4/28/09 8:00 AM	5/25/09 5:00 PM	2000		i i i i i i i i i i i i i i i i i i i			
Bottoms returned to Simic	7 days?	5/26/09 8:00 AM	6/3/09 5:00 PM	0.000		Ū.			
■Vessel production	86 days?	6/4/09 8:00 AM	10/30/09 5:00 PM			-		-	
Gold plating	7 days?	7/13/09 8:00 AM	7/21/09 5:00 PM	1000					
Full Dimensional tests	3 days	11/2/09 8:00 AM	11/4/09 5:00 PM	2000				L	
⊞ Vacuum tests	37 days?	11/5/09 8:00 AM	12/25/09 5:00 PM					, , , , , , , , , , , , , , , , , , ,	
Delivery to LNGS	1 day?	12/28/09 8:00 AM	12/28/09 5:00 PM					•	12/28
∃Internal Vessels (Still+50mK+MC)					,		*		

HUT

Services

- Design documents: 15/11/08
- INFN Tender Approval: 16/12/08
- Tender Pubblication; 6/2/09
- · Companies' requests deadline: 24/2/09 (82!)
- Committee meeting: 20/3
 Earthquake
- Companies invitation: 15/6/09
- Winner selection: 20/7/09
- INFN Approval ⇒ 25/9/09

Clean Room

- Design documents: 15/11/08
- INFN Tender Approval: 16/12/08
- Tender Pubblication; 11/3/09
- · Companies' requests deadline: 30/4/09 (6!)
- Committee meeting: 22/6
- Companies invitation: end of june
- Offer deadline: 11/9/09
- Winner selection: mid september
- INFN Approval \Rightarrow 30/10/09

At least 1 month for order delivery Then Construction and Installation

Completato

- Walls
- Doors (& windows) underway
- MSP Installation
- Utilities Tender (published 6th February)
- Clean Room Tender (to be published)

Da fare

- Lead for the External Shielding
- Floors covering
- Shielding Lift (to be completed)
- Shielding horizontal movement
- Columns filling
- Nitrogen supply
- Precise leveling (Lift, MSP)

CUORE HUT

CUORE schedule

2008:

Hut construction Crystals production

2009:

Utilities Clean room External Shielding Cryogenics

2010-2012: CUORE0 Detector assembly Faraday Cage Front-end & DAQ

2012: Data taking

CUORE richieste 2010

MISSIONI INTERNE	155
 Missioni/turni LNGS 	111
 Meeting Collaborazione 	16
Coordinamento	18
 Produzione 	10
MISSIONI ESTERE	61 5
Controllo produzione	20
Monting di collaborazione	20 22 E
	32.5
CONSUMO 160	6
CONSUMO 16 • Criostato 50	6
CONSUMO16• Criostato50• Radioattivita'40	6
CONSUMO16• Criostato50• Radioattivita'40• Laboratori15	6
CONSUMO16• Criostato50• Radioattivita'40• Laboratori15• Elio20	6
CONSUMO16• Criostato50• Radioattivita'40• Laboratori15• Elio20• Elettronica7	6
CONSUMO16• Criostato50• Radioattivita'40• Laboratori15• Elio20• Elettronica7• Metabolismo LNGS3	6
CONSUMO16• Criostato50• Radioattivita'40• Laboratori15• Elio20• Elettronica7• Metabolismo LNGS3• Potenz, Lab, Ge15	6

TRASPORTI	15
MANUTENZIONE	10
INVENTARIO	13
COSTR.APP. • Criogenia • Packaging	232 222 10

GERDA

GERDA STATUS REPORT

L'apparato e' in avanzata fase di installazione

- Quasi tutti I membri di GERDA dei LNGS hanno perso casa (Pandola, Junker, Di Vacri, D'Andragora, Nisi): ad oggi quasi tutti pendolano quotidianamente dalla costa adriatica o da Avezzano.
- 6 Aprile: tutti i lavori sono stati sospesi
- 20 Aprile: inizio dell'ispezione dettagliata. Nessun danno
- 4 Maggio: lavori ripresi alla Hall di Montaggio (HdM) & in WT e al lab.germani.

Main Activities along 2008/2009 (in red activities in which MiB group has been involved or has direct responsibility)

- WT tested and Water plants (Connection to Borexino water purification plant) tested and ready.
- Water Drain authorization process.
- Cryostat: measured the Rn emanation from the inner walls (Cu+ Steel) 3 times: need installation of a Cu shroud around the detectors to prevent Rn mixing in LAr by convection currents.
- Cryogenic infrastructures (heater exchange, stocking dewars, valve box, cryogenic piping etc.) built
- Commissioning lock with source insertion system built and ready at Hall di Montaggio
- DAQ Ge detector with internal threshold triggering developed
- Network structure for the Gerda building in Hall A defined; hardware ready for deployment
- Cryogenic, 3-ch FE electronic, based on an ASIC circuit, designed and tested (FWHM: 2.6 keV @1332 keV) with encapsulated detector and 12 m long cables. Low activity components (included capacitors) selected
- Test and field modeling of a BEGe detector as reference for the pilot production with deplGe.
- Definition of program and procedures of the BEGe pilot production with deplGe to certify crystal and detector production procedures and maximize production yield in view.

20 maggio 2009 tails follows......

C. Cattador

Status at LNGS

Water tank: cryostat is not visible (inside)

Criogenic infrastructures ready 20 maggio 2009

Clean room completed and tested

Installation of reflecting foil inside the WT for water Cerenkov μ-veto

Ongoing & next-future activities: Integration/commissioning in Hall di Montaggio (Hd

Started on 6th may in HdM integrazione di

• String of (non-enriched) detectors phase I. N.B.:All the *enr* detectors have been tested for E_{Res} and LC in summer 2008 in GdL underground lab with new contacts and definitive holder to be operated in LAr.

- Cryogenic 3-ch Front End (FE) in its low activity version + cabling
- Commissioning lock & glove box
- DAQ germani Fase I
- Test cryostat con raffreddamento attivo

Alla fine dei tests, Glove-box & Lock system saranno poi spostationella clean room sovrastante i

Piano di lavoro

Piano di lavoro prima del sisma del 6 aprile:

- Aprile: Completamento camera pulita
- Maggio: installazione riscaldatore gas esausti e commissioning sistema di criogenia e PLC
- Giugno: Riempimento con LAr
- Aprile Giugno: Commissioning lock cablaggio FE, detectors Fase I in HdM
- Luglio/Agosto: Inizio commissioning in sala A

Dopo il sisma:

Ad oggi: 1.5 – 2 mesi ritardo solo per sospensione lavori camera pulita
4 Maggio: lavori in sala A ed in HdM ricominciati

•19 Maggio: ricominciati lavori camera pulita

 \Rightarrow La collaborazione sta cercando di minimizzare i ritardi

C. Cattado

Foreseen end of 2009. First Physic run: Along 2010 depending on achieved bckgrd.

- MI: 8 kEuro
- ME: 5 kEuro
- Inventariabile: 15 kEuro
- Lavorazioni: 6 kEuro
- Consumo: 10 kEuro

the MARE project

Microcalorimeter Arrays for a Rhenium Experiment

Angelo Nucciotti

Dipartimento di Fisica "G. Occhialini",Università di Milano-Bicocca INFN - Sezione di Milano-Bicocca

MARE è un progetto per determinare la massa del neutrino dalla misura dell'end-point del decadimento β del ¹⁸⁷Re con tecniche calorimetriche

- MARE è la fusione di MIBETA (Milano) e MANU (Genova)
 - unici esperimenti al mondo che utilizzano il ¹⁸⁷Re per la misura diretta e calorimetrica della massa del neutrino (dal 1990)
 - raggiunte sensibilità intorno a 15 eV
- rappresentante nazionale: <u>Andrea Giuliani</u> (Univ. Insubria)
- responsabili locali
 - Genova: <u>Flavio Gatti</u>
 - Milano-Bicocca: <u>Angelo Nucciotti</u>

scopo di MARE: raggiungere una sensibilità sub-eV

Consiglio di Sezione del 10 luglio 2008

MARE-1 @ Sez. INFN di Milano-Bicocca

- aim: high statistics measurement with a ready-to-use technology
 Silicon implanted micromachined thermistors (NASA-or ITC-irst)
 - NTD thermistors on SiN membrane
 AgReO₄ absorbers
- few eV statistical sensitivity in few years
 cross-check spectrometer results
- investigate systematic effects in thermal calorimeters with 10⁹ events

MARE-1 SEMICON U. Milano-Bicocca / INFN Sez. Mi-Bicocca U. Insubria / INFN Sez. Mi-Bicocca ITC-Irst / INFN Sez. Padova U. Wisconsin @ Madison NASA/Goddard

Laboratorio di Criogenia in Bicocca (livello -3)

MARE-1 SEMICONBRICATION PROCESS

NASA/GSFC XRS2-2 arrays 6x6 pixels

- flat AgReO₄ single crystals
 - ⊳ *m* ≈0.5 mg
- detector R&D phase results
 - \triangleright best operating $T \approx 90 \text{mK}$
 - $\triangleright \Delta E \approx 30 \text{ eV}, \tau_R \approx 250 \mu \text{s}$

MARE-1 SEMICON: statistical sensitivity from MC

calibration source pulling string

connection boxes

MARE-1: situazione attuale Luglio 2009

SITUAZIONE IN VISTA DELLA MISURA CON 2 ARRAY (72 CANALI)

\circ DAQ ed elettronica a temperatura ambiente \rightarrow completa

• Set-up criogenico

- \triangleright wiring \rightarrow completo
- \triangleright sistema di calibrazione automatico \rightarrow completo
- \triangleright box elettronica fredda \rightarrow 90% completa (problemi con microponti) \blacktriangleleft
- \triangleright stadio di disaccoppiamento 4K-MC \rightarrow 30% completa (problemi con Kevlar)
- \triangleright holder rivelatori \rightarrow completo
- \triangleright rete di polarizzazione \rightarrow completa
- \triangleright assemblaggio e test \rightarrow **da fare** (i primi test hanno evidenziato i problemi)

Rivelatori

- \triangleright produzione dei cristalli \rightarrow completa
- \triangleright array \rightarrow **pronti**
- \triangleright assemblaggio rivelatori \rightarrow 15% completato (da finire dopo primo test a freddo)

I problemi sono in via di soluzione La misura dovrebbe partire entro settembre

•31-07-2009 Risultati dell'analisi preliminare dei primi mesi di misura con assorbitori dielettrici 0% (la misura non è ancora partita)

•31-07-2009 Completamento del wiring criogenico per microonde e sua caratterizzazione in vista della realizzazione di MKIDs 15% (holder e PCB per test criogenici completati)

- •31-12-2009 Completamento di un anno di misura con assorbitori dielettrici
- •31-12-2009 Risultati dell'analisi dei primi sei mesi di misura con assorbitori dielettrici
- •31-12-2009 Completamento dei primi test su MKIDs

MARE-1: Milano-Bicocca/Como 2010 activity

maintain refrigerator running with 72 detectors
 data analysis and systematics study
 upgrade analysis package
 prepare to deploy at least other 6 arrays during 2011*
 MARE-2 detector R&D
 complete cryogenic set-up for microwave read-ourt
 first MKID production (at irst/FBK) and test

* cosa fare con MARE-1 nel 2011 sarà discusso con i referee durante il 2010 alla luce dei risultati ottenuti con 2 arrays

MARE-1: preventivo 2010

	PREVENTIVO 2010				
	 Missioni estero: Missioni interno: 	20K 15K			
FINANZIAMENTI NEGLI ANNI SCORSI	mantenimento misu •Consumo :	ra 72 canali 70K			
• 2005 (MIBETA)	Elio liquido:	60K			
▶ richiesti: 338K	metabolismo:	10K			
► assegnati: 62K+15K					
• 2006 (MIBETA)	ampliamento con	ı 6 arravs			
▶ richiesti: 370K	 Costruzione Apparati: 	361K			
► assegnati: 60K	► 216 cristalli	71K			
• 2007 (MARE)	 elettronica 220 canali 	110K			
▶ richiesti: 302K	upgrade set-up criogeni	co 40K			
▶ assegnati: 61K	► DAO	120K			
• 2008 (MARE-RD)	 microponti (irst) 	20K			
▶ richiesti: 316K		_ • • • •			
▶ assegnati: 81.5K	MKID R&	D			
• 2008 (MARE-RD)	Consumo:	35K			
▶ richiesti: 513K	 elio liquido 	15K			
▶ assegnati: 101.5K	PCBs. materiali vari	5K			
	 sensori nuovi (irst) 	5K			
	 Inventario: 	5K			

► kit di calibrazione

Angelo Nucciotti 12

5K

MKIDs R&D for MARE-2

- resonator exploiting the *T* dependence of inductance in a superconducting film
 - **qp detectors** suitable for large absorbers
 - fast devices for high single pixel activity A_β and low pile-up f_{pp}
 - high energy resolution
 - multiplexing for very large number of pixel

Sensitivity $\Delta E = 5 \text{ eV}$ $t_{M} = 36000 \text{ detectors x 3 years}$ $A_{\beta} = 20 \text{ c/s/det}$ $\cdot \tau_{rise} = 1 \ \mu s \Rightarrow m_{v} < 0.2 \text{ eV}$ $\cdot \tau_{rise} = 100 \ \mu s \Rightarrow m_{v} < 0.4 \text{ eV}$

 KIDs developed for astrophysics
 application to bulky absorber still requires further efforts

BENE (nuovi fasci di neutrini agli acceleratori)

- Attivita' in *BENE*: studi vs NUFACT (IDS), in parallelo a MICE
- Attivita' in **Harp** : pubblicazioni per
 - K2K & MiniBoone fluxes
 - Super Beams & Neutrino Factory Design
 - Atmospheric fluxes (< 15 GeV)
 - Tuning generatori MC

M. Bonesini Milano 6 Luglio 2009

Atmospheric neutrino fluxes

Ne

Nean

в

Baron

- Primary flux is now considered to be known to better than 10%
- Most of the uncertainty comes from the lack of data to construct and calibrate a
 reliable hadron interaction model.
- Model-dependent extrapolations from the limited set of data leads to about 30% uncertainty in atmospheric fluxes

 \Rightarrow cryogenic targets

78% nitrogen

21% oxygen

p+C @ 12 GeV/c

θ = 0.06-0.09 rad

10²

10

10⁻¹

10-2

0

HARP

preliminary

2000

4000

6000

p (MeV/c)

8000

 10^{3}

10²

10-2

0

2000

4000

θ = 0.21-0.24 rad

6000

p (MeV/c)

8000

10

10²

10

10⁻¹

10

0

8000

6000

p (MeV/c)

HARP

preliminary

2000

4000

d²σ∜(dp dΩ) (mb/(GeV/c sr))

- π^+ : leading particle effect
- Error: stat. and syst.

Shapé looks similar => may use simpler C target data (solid, not cryogenic target)

Publications in 2008

- M.G. Catanesi et al., `` Forward p ^{+/-} production in p-O2 and p-N2 interactions at 12 GeV/c, Astropart. Phys. 30: 124-132,2008
- M.G. Catanesi et al., `` Measurement of the production cross-section of p ^{+/-} in p-C and in of p ^{+/-} C interactions at 12 GeV/c, Astropart. Phys. 29: 257-281,2008
- M.G. Catanesi et al., `` Large-angle production of charged pions with 3-12.9 GeV/c incident protons on nuclear targets", Phys. ReV. C77:055207, 2008
- **M.G. Catanesi et al.** `` Absolute momentum calibration of the HARP TPC", JINST 3:P04007,2008
- M. Bonesini, ``The R&D effort towards a Neutrino Factory'', Nucl. Phys. Proc. Suppl. 188:359-361,2009
- M. Bonesini, ``Particle Production versus energy '', POS (Nufact08) 092

2 Febbraio 2009

Caro Francesco, caro Benedetto,

è con particolare piacere che scrivo questo mail per informare voi e la Commissione II del fatto che la NASA ha appena rimesso AMS nel manifesto dei voli Shuttle.

Come si puo' vedere dal file allegato il volo 134, aggiunto in ottobre al manifesto e previsto nel settembre 2010, è dedicato ad AMS come payload primario.

E' comunque intenzione della Collaborazione AMS essere pronti qualche mese prima, nel maggio 2010, per sfruttare se possibile uno degli altri due voli, attualmente dedicati agli spares: STS 132 (ULF4) e STS 133 (ULF5).

Ti prego di informare la Commissione di questo importante sviluppo relativo ad AMS.

Cordiali saluti

Roberto Battiston

2 Maggio 2009

Cari Colleghi,

volevo informarvi che dopo venti giorni di raffreddamento a gas He freddo il magnete di AMS ha raggiunto 4,5 K, il serbatoio di He Liquido si sta riempiendo, e a giorni inizieremo il passaggio a He superfluido (1,8 K)

Le cose stanno procedendo bene, e stiamo recuperando del tempo perso all'inizio dell' anno, quando il GSE criogenico ci ha dato dei problemi relativamente alla sua corretta operatività.

Cari saluti a tutti

Roberto

ISTITUTO NAZIONALE DI FISICA NUCLEARE Preventivo per l'anno 2010

Struttura Milano Bicocca

CODICE	SIGLA	COMMISSIONE		
	AMS2	CSN II		
Resp. Loc.: Pier Giorgio Rancoita				

. .

PREVENTIVO LOCALE DI SPESA (In K€)

-

-

Conitala	Descrizione	Parziali		Totale	
Capitolo	Descrizione		SJ	Richieste	SJ
INTERNO	1. Riunioni della collaborazione	6.50			
	2. Attivita' presso il CNAF	4.50		11.00	0.00
ESTERO	 Per fase realizzativa del SOC al CERN: run e implement SW DT per dati e MC e data catalog (1.5 mesi u inclusi almeno 5 viaggi) 	13.50			
	2. riunioni di coll inclusi 1 negli USA e 3 al CERN, 3 MissioneUSA per SOC di 2 viaggi uomo di una settima	21.50			
	3. 4 meet CERN, SW group e Data Tr. (2.5 viaggi/uomo per meet.)	10.50		45.50	0.00
CONSUMO	 Spare parts per Milano-Bicocca: Alimentatori, Dissipatori, Mboards, schede Video, switch e schede LAN GB, RAM etc.: materiale spare e' attualmente esaurito. 	3.50			
	2. consumi di gruppo a MI e al CERN	7.00			
	3. 3 dischi spare Seagate SATA ST3500320AS + 2 dischi raids da 500GB con slitte	2.00			
	4. (I)20 dischi SATA da 500GB per Storage DT al CERN (e Milano)	9.50			
	5. scheda di accesso remoto per UPS zona Data Transfer MI Bicocca	1.00			
	6. meta' del Contratto Cilea (relativo al mantenimendo ed implementazione applicativi AMS) (capitolo 140920)	21.00		44.00	0.00
SEMINARI					
TRASPORTI					
PUBBLICAZIONI					
MANUTENZIONE					
	1. (G)Postazioni di lavoro a Milano	4.50	•		
INVENTARIO	2. (H)Sostituzione macchine di calcolo (MIB)	3.00		7.50	0.00

LICENZE-SW					
	1. (A)Acquisto macchine +storage Mock-up DT per MI Bicocca (richiesta che sara' avanzata per un finanziamento 2009)	20.00			
APPARATI	2. (B) Acquisto macchine per presa dati per funzionalita' DTMS concordate con AMS-SW Group (MIB)	25.00			
	3. (C)1 Server di ridondanza per il DT (CERN)	5.50			
	4. (D)sostituzione della DT Station del CERN (non piu' operativa) necessaria per accesso al DT	1.00			
	5(E)Server di controllo e gestione apparati al CERN	0.50			
	6. (F) UPS per server al CERN	4.00		56.00	0.00
		Totale AM	IS2 Milano Bicocca	164.00	

Mod. EC/EN 2

(a cura del responsabile locale)

<u>AMS2 – Milano-Bicocca</u>

G.Boella (60%) p.o, C.Consolandi (100%) dott., D.Grandi (100%) INFN, M.Gervasi (70%) p.a., E.Memola ass INFN (100%), S.Pensotti (100%) r.u., P.G.Rancoita (100%) d.r.INFN, M.Tacconi borst.univ (100%)

Richieste 2010 per:

Attività scientifica Sistema di data-transfer per la fase-2

Fare clic per modificare lo stile del sottotitolo dello schema

AMS-02 on International Space Station Alpha

110000000

Fundamental Science on the International Space Station

Worldwide Participation in the AMS Experiment on the Space Station since 1994 – total spent > \$1.2 billion

~ 95% of AMS is constructed in Europe and Asia

Superconducting Magnet: temperature of fluid Helium reached!

New Technology: Silicon Tracker Detector

Sensor positioning (Geneva)

Ultrasonic wire bonding (ETH-Z)

assembly of all Flight Hardware onto the Superconducting Magnet

The 650 fast microprocessors

- <u>Shuttle</u>
- Constellation
- <u>Commercial</u>
- <u>Unmanned</u>
- <u>Russian</u>
- European
- <u>Chinese</u>
- <u>Other</u>

STS-134: PRCB Baselines Penultimate Shuttle Flight to Take AMS to Station

June 28th, 2009 by Chris Gebhardt

NASA mission planners have officially baselined the final two scheduled missions of the Space Shuttle Program, STS-133 and STS-134 - of which STS-134 is expected to fly first, in July 2010, based on an expected Change Request (CR) to move the flight that will deliver the Alpha Magnetic Spectrometer (AMS) to the International Space Station (ISS) ahead of the STS-133 logistics flight.

Opening Assessments:

Assuming no major shake-ups to the flight manifest - and the approval of the expected CR - STS-134 will be the 133rd flight of the Space Shuttle Program (CSP)/ and the 25th and final voyage of the orbiter Endeavour, which began service in May 1992 on STS-49.

8th Floor: Expansive ISS and Constellation Notes

03/07/2009 1

Analisi sc. a Milano-

 Tracciament bidi Garticelle nella magnetosfera:

 Il programma fa uso dei modelli di campo magnetico interno ed esterno in interazione con il vento solare.

 Trasporto di RC nell'Eliosfera:
 simulazione della ropagazione dei RC nella cavità solare con Montecarlo Stocastico 2D.

Tracciamento nella Magnetosfera

- E' stato ri-adattato il codice di tracciamento delle particelle nella magnetosfera terrestre in previsione della presa dati di ams-02 e l'utilizzo di root-tree
- E' stata completata (per atomi di He) la stima della funzione di trasferimento nella magnetosfera attraverso il back-tracking di particelle simulate nella magnetosfera per i dati di AMS01: ottimo accordo con i dati pubblicati
- La stima è stata estesa al caso di ioni Fe e C (HEAO-C3) ed i risultati sono stati confrontati con i dati di AMS01 (stessa polarità solare –1980)
- All'interno della magnetosfera, considerando la rigidità, il rapporto ioni/protoni è maggiore di quello cosmico di un fattore 2-3.

. CC

edico creations.co

Abbondanze relative: All'interno della Magnetosfera He/p Fe/p Geomagnetic *C/p* region $6.5 \times 10-4$ $1.6 \times 10-1$ $5.6 \times 10-3$ **M1** M2 1.6 × 10-1 5.4 × 10-3 $6.6 \times 10-4$ $1.5 \times 10-1$ 5.4 × 10-3 $-6.6 \times 10-4$ M3 $1.5 \times 10-1$ $5.1 \times 10-3$ $6.0 \times 10-4$ M4 $1.6 \times 10-1$ $6.3 \times 10-4$ 5.1 × 10-3 1.5 × 10-1 4.8 × 10-3 M6 $5.4 \times 10-4$ **M7** $1.4 \times 10-1$ $4.1 \times 10-3$ $4.3 \times 10-4$

Il rapporto è stato calcolato utilizzando il flusso totale integrato in ogni regione geomagnetica

Abbo	ondanze	e relat	ive:	
Er	hanceme	nt factor	S	
Geomagnetic	He/p	C/p	Fe	/p
region		· · · ·		
M1	2.4	3.0	3.	7
M2	2.4	2.9	3.	7
M3	2.3	2.9	3.	7
M4	2.3	2.7	3 .	4
M5	2.4	2.7	3,	5
<mark>M6</mark>	2.3	2.6	3.	0 ~
M7	2.1	2.2	2.	4 -

Enhancement_factor (M) = Ratio (M) / Ratio_cosmic

alien creations.«

Trasporto di RC

Studio degli effette della modulazione solare sui raggi cosmici galattici (GCR): si è sviluppato ed utilizzato un modello stocastico di simulazione a 2D, ovvero dipendente dal raggio e dalla latidudine solare.

 Il modello 2D comprende i moti di deriva dovuti a curvatura e gradiente del i.m.f. (interplanetary magnetic field), e allo strato neutro di corrente, in funzione della polarità del campo magnetico solare. Il modello 2D è time dependent a causa della variazione dei valori misurati della velocità del vento solare nel piano dell'eclittica (V), dell'angolo di tilt (a) e dell' i m f

Raggi Cosmici in Eliosfera

Raggi Cosmici in Eliosfera

La rotazione differenziale del Sole causa una divisione dell'eliosfera in 2 regioni divise da uno strato neutro di corrente

Lo strato neutro di corrente oscilla entro un certo angolo con l'eclittica

> <u>Angolo di</u> <u>Tilt</u>

Raggi Cosmici in Eliosfera

L'ampiezza dell'angolo di tilt dipende dalla attività solare

Modificando nel modello il valore

dell'angolo di tilt del coefficiente di diffusione della velocità del vento solare

Il modello diventa Time Dependend

Come pure il coefficiente di diffusione e la velocità del SW

Modulazione solare

•Studio dell'andamento della modulazione solare rispetto ai parametri fisici e ottimizzazione dei parametri di calcolo

•Confronto con i dati sperimentali di vari esperimenti ad 1 AU e a distanze maggiori: previsioni spettri modulati per i pianeti del sistema solare

•Numero di particelle finora simulate = 1013 – 1014

Modello dinamico

 Processo fisico: I RC entrando nell'eliosfera a 100 AU sperimentano un campo magnetico che si è propagato con il vento solare molto tempo prima

 Considerando la Vsw per raggiungere 100 AU il vento solare impiega circa un anno

 Il tempo di propagazione dei RC (dipendente dall'energia) non supera comunque il mese

 Coefficienti di diffusione dinamici: solo in prossimità della Terra i parametri saranno quelli relativi al periodo di presa dati. In funzione della distanza dal Sole userò parametri corrispondenti a periodi precedenti,

RC modulati ad 1 AU - A

RC modulati ad 1 AU - A

RC modulati ad 1 AU - A

Data Handling e fase-2

AMS-02 Data Handling and Italian Ground Segment

AMS-CERN MOU : Computing and Networking Requirements AMS-02 Computing and Data Centers : Bldg.892 wing SA

DT to IGSDS@CNAF

- Come previsto nel 2004, il sistema di DT è entrato in produzione per trasferire dal CERN all'IGSDS @CNAF i dati della produzione MC 2005, 2006, 2007 e 2008
- I dati vengono trasferiti al CNAF su hosts dedicato e da esso copiati su storage a nastro (CASTOR)
 - DT throughput: 61 Mb/sec
 - CASTOR throughput: 80 Mb/sec
- In totale trasferiti da Jun-05: 28 TB

Attività di Data Transfer.

- L'attività di sviluppo per il Data Transfer (DT) si è concentrata principalmente su:
 - Integrazione in ECG -GRID per il trasferimento diretto su CASTOR @ CNAF
 - in full production da Marzo 2007
 - Upgrade del DT a versione multi-threaded
 - che ha portato il throughput complessivo a $\sim 60 \text{ Mb/s}$
 - Sistema di DT di dati
 - MC
 - RAW
 - REC

Sviluppo sistema DT

- le principali attivita' svolte per il sistema di DT per il 2009 sono:
 - sviluppo e implementazione dei sistemi di *fault tolerance*
 - sia HW che SW
 - setup dei server disponibili al momento (versione preproduction)
 - studio di fattibilità di un sistema di DT di recovery che possa intervenire in maniera semi-automatica in caso di serio problema di uno dei siti
 - studio di fattibilità di un Event DB basato su Oracle e su TDV di eventi ricostruiti.
 - studio di fattibilità di integrazione del DT DB con il DB del SOC

Throughput: 58 +/- 19 Mb/s

Server definitivo per DataTransfer mockup

- Il mockup del server per il Data Transfer verrà installato presso l'AMS Data Transfer management and Survey Facility, presso MI-Bicocca.
- Lo scopo e' avere un sistema identico a quello in produzione al CERN su cui sviluppare, debuggare e diagnosticare problemi, per poi apportare le migliorie del caso sul sistema in produzione con un down-time minimo.
- Requisiti:
 - DELL R410, 8 GB RAM, Qlogic 4 Gb/s FC HBA
 - Costo: = 5500 euro IVA inclusa
 - Richiesta su fondi 2009

Storage definitivi per DataTransfer mokup

- Il mockup dello storage per il Data Transfer verrà installato presso l'AMS Data Transfer management and Survey Facility, presso MI-Bicocca.
- Lo scopo e' avere un sistema identico a quello in produzione al CERN su cui sviluppare, debuggare e diagnosticare problemi, per poi apportare le migliorie del caso sul sistema in produzione con un down-time minimo.
- Requisiti:
 - STORAGE ARRAY SATA FC redundant controller estraibili hot swap, 1.5 TB RAW (espandibili a 9 TB)
 - Costo: = 14500 euro IVA inclusa
 - Richiesta su fondi 2009

Server di ridondanza per DataTransfer

- Al fine di garantire un adeguato livello di affidabilità, il DT userà anche un server di ridondanza presso il SOC del CERN
- Requisiti:
 - DELL R410, 8 GB RAM, Qlogic 4 Gb/s FC HBA

- Costo: = 5500 euro IVA inclusa

Macchine per presa dati per funzionalita' DTMS

- Tali server devono svolgere le seguenti funzioni:
 - DT DB redundancy server (copia di ridondanza dei DB del DT del CERN e del CNAF)
 - DT File Server
 - Oracle AMS02 Replica
 - Server di sviluppo e test nuove funzionalità degli applicativi
 - Server Spare
- Requisiti:
 - 5 x DELL R410 , 8 GB RAM
 - Costo: = 25500 euro IVA inclusa

Server di controllo e gestione apparati al CERN

- Tali server servono ad accedere e gestire gli apparati in produzione al SOC del CERN.
- In particolare è necessaria una postazione di lavoro e un sistema "portabile" con capacita' di accesso in modalità console ai server, allo storage e agli UPS.
- Attualmente non esiste alcun apparato che lo permetta (se non macchine "prestate")
- Requisiti:
 - DELL Vostro 420 e DELL Latitude E5500-RS232
 - Costo: = **500+1000 = 1500 euro IVA inclusa**

Parte del Contratto CILEA

- Meta' del contratto Cilea relativo al mantenimento ed implementazione applicativi AMS:
 - Implementazione e manutenzione del sistema di Data Transfer presso il SOC del CERN
 - Implementazione e manutenzione del sistema di processamento code di dati ricostruiti e integrazione con il DB Oracle dell'esperimento presso il SOC del CERN
 - Implementazione del sistema di replica del DB Oracle dell'esperimento presso la DTMSF di Milano Bicocca

Costo: Euro 21000 (IVA inclusa)

ISTITUTO NAZIONALE DI FISICA NUCLEARE Preventivo per l'anno 2010

Struttura Milano Bicocca

CODICE	SIGLA	COMMISSIONE
	AMS2	CSN II
Resp. Loc.: Pier Giorgio Rancoita		•

PREVENTIVO LOCALE DI SPESA (In K€)

Capitolo	Descrizione	Parziali		Totale	
		Richiesta	SJ	Richieste	S
INTERNO	1. Attivita' presso il CNAF	4.50			
	2. Riunioni della collaborazione	5.50		10.00	
ESTERO	1. Per fase realizzativa e funzionamento del SOC al CERN: run e implement SW DT per dati e MC e data catalog (2.5 mesi uomo inclusi almeno 6 viaggi)	12.50			
	2. riunioni di coll inclusi 1 negli USA e 3 al CERN (per 3 viaggi uomo), 3 Missione USA per SOC /Kennedy di 2 viaggi uomo di una settima	29.50			
	3. 4 meet CERN, SW group e Data Tr. (2. viaggi/uomo per meet.)	10.50		52.50	
CONSUMO	 Spare parts per Milano-Bicocca: Alimentatori, Dissipatori, Mboards, schede Video, switch e schede LAN GB, RAM etc.: materiale spare e' attualmente esaurito. 	3.50			
	2. 3 dischi spare Seagate SATA ST3500320AS + 2 dischi raids da 500GB con slitte	2.00			
	3. (I)20 dischi SATA da 500GB per Storage DT al CERN (e Milano)	9.50			
	4. scheda di accesso remoto per UPS zona Data Transfer MI Bicocca	1.00			
	5. meta' del Contratto Cilea (relativo al mantenimendo ed implementazione applicativi AMS) (capitolo 140920)	21.00			
	6. consumi di gruppo a MI e al CERN (metabolismo)	7.00			
	7. nolo macchine USA (kennedy+SOC)	1.00		45.00	
SEMINARI					
TRASPORTI					
PUBBLICAZIONI					
MANUTENZIONE					
INVENTARIO	1. (H)Sostituzione di nodi per calcolo (MIB)	6.00		15.00	

Г

×	2. (G)Postazioni di lavoro a Milano e CERN	9.00	70	
LICENZE-SW				
	1. (A)Acquisto macchine +storage Mock-up DT per MI Bicocca (richiesta che sara' avanzata per un finanziamento 2009)	20.00		
APPARATI	2. (B) Acquisto macchine per presa dati per funzionalita' DTMS concordate con AMS-SW Group (MIB)	25.00		
	3. (C)1 Server di ridondanza per il DT (CERN)	5.50		
	4. (D)sostituzione della DT Station del CERN (non piu' operativa) necessaria per accesso al DT	1.00		
	5(E)Server di controllo e gestione apparati al CERN	0.50		
	6. (F) UPS per server al CERN	4.50	56.50	
		Totale AMS2 Milano Bicocca	179.00	

Mod. EC/EN 2

(a cura del responsabil

Pulsars with MAGIC

Lo studio alle energie piu' alte consente di andare piu' in profondita' nella magnetosfera delle pulsar, e quindi piu' vicino alle zone di emissione.

Questo permette di capire in base a quale meccanismo le pulsar emettono radiazione coerente oltre a studiare la fisica dello stato solido in condizioni estreme (densita' superficiale 10¹⁴ g/cm³).

> Recent amazing discovery of pulsed emission > 25 GeV from the Crab pulsar by MAGIC (The MAGIC Collaboration, 2008Sci...322.1221C) provides key constraints to all Crab pulsar models.

Figure 3: Model fits to the signal event distribution. Panel *a* shows the measured SIZE distribution of the P1+P2 phase-integrated signal. SIZE is a main image parameter, which measures the total intensity of the Cherenkov flash in the camera (in units of photoelectrons). In this analysis it is used as a rough estimate of the γ -ray energy. To measure the cutoff, we extrapolate the P1+P2 phase-averaged EGRET (15) energy spectrum to our energy band and introduce two cutoff scenarios, a) an exponential cutoff: $F(E) \propto E^{\alpha} exp(-E/E_{\alpha})$ (red bins) and b) a super-exponential cutoff: $F(E) \propto E^{\alpha} exp(-(E/E_{\alpha})^2)$ (blue bins). Then we estimate the expected number of signal events in each SIZE bin by folding the extrapolated spectrum with the MAGIC effective area. The figure shows the best-fit solution for the exponential and the super-exponential case. Panel *b* shows the probability curves calculated from the χ^2 -test for the model to the data with cutoffs at different energies. The red curve corresponds to the exponential model, the blue curve to the super-exponential model. The most probable cutoff energies are: $16.3\pm1.5_{stat}\pm5.4_{syst}$ GeV for the exponential model, and $20.7\pm1.5_{stat}\pm5.7_{syst}$ GeV for the super-exponential model.

Galactic sources with MAGIC: LS I +61 303

Albert et al.

FIG. 1.— Radio, X-ray and VHE γ -ray light-curves obtained with VLBA, EVN, MERLIN (left-hand scale), *Chandra* (right-hand scale in 10^{-11} ergs cm⁻² s⁻¹) and MAGIC (right-hand scale in 10^{-11} photons cm⁻² s⁻¹) during the two observing periods (October and November 2006). The horizontal error bars show the time spanned by the different observations. The shaded area marks the range of X-ray flux values previously reported (see Table 3). The upper axis shows the orbital phase using the ephemeris from Gregory (2002).

Sono sorgenti particolarmente hot ora, perche' studiate a lungo senza che si riuscisse, nel caso LS I a distinguere tra due ipotesi di sistema binario (si vede solo la stella compagna e non si sa se l'oggetto compatto che coruota con essa sia una stella di neutroni o un buco nero) e nel caso del BL LAC il suo redshift, non

noto nonostante questo sia uno dei Nuclei Galattici Attivi piu' brillanti

4

Taylor et al. 1992 nature Maraschi & Treves 1981

BL LACs observations

Constraints on redshift : PG 1553+113 (bright BL LAC)

E.PRANDINI et al. PG 1553+113 REDSHIFT UPPER LIMIT

 Ikelhood ratio probability obability [%] max probability 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 redshift z

Δ

(a) Constraints on the reshift of PG 1553+113 with the likelihood ratio test. See text for details.

Fig. 3. Constraints on the reshift of PG 1553+113.

Constraints on spectral index

v I_v (nW m⁻² sr⁻¹

10²

10

10-1

1.1 1.0 18 19 20 21 22 R (host)

ii uit

30

1.3

°× 1.2

Fig. 4. χ^2 versus magnitude of the host galaxy of the BL Lac object PG 1553+11 (R = 14.4), for a host galaxy with $R_e = 10$ kpc at redshift 0.35.

L19

Fig. 5. Relation between the upper limit of the host galaxy (R_e = 10 kpc) magnitude and the redshift for the BL Lac object PG 1553+11 Permitted parameters are in the area above the curve. The Gaussian envelope of the BL Lac host magnitude distribution is also shown for reference (Sbarufatti et al. 2005)

Fig. 2. Energy density of the Extragalactic Background Light. Direct measurements, galaxy counts, low and upper limits are shown by different symbols. The dashed black line represents the upper limit set by H.E.S.S. [7]. The black solid curve is the minimum EBL spectrum at z=0 from the model adopted in this work.

A. Treves et al .: The distance of PG 1553+11

• With the advent of MAGIC II and the lowered energy threshold it will be possible to observe other rotation powered pulsars with MAGIC;

• The lucky context of a hign number of high energy observatories (MAGIC, AGILE, Fermi, etc.) gives concrete opportunities for multi-wavelenght campaigns on selected targets;

 Multi-wavelenght light curves and new limits on cut-off energies and spectra will provide constraints on pulsars' emission models;

• Very High Energy emission from relativistic binary systems can finally help discriminate between different scenarios;

• MAGIC observations of BL LACs bring new light on the properties of the high redshift Universe.