Detection of B-mode Polarization at Degree Scales using BICEP2

Angiola Orlando for the BICEP2 Collaboration

Universe becomes transparent

The Cosmic Microwave Background (CMB)

The CMB traces the conditions of the universe at the time when atoms first began to form.

Precision measurements of the CMB temperature have provided a wealth of cosmological information consistent with the inflationary paradigm.

However, any imprint of the inflationary gravitational waves have so far eluded detection in the CMB.

CMB polarization: arises at last scattering from local radiation quadrupole

From Thomson scattering wherever there is ionized gas and quadrupole anisotropy

CMB polarization

Density Wave

E-Mode Polarization Pattern

Т	I.	ı.		-	-	_	_	_	-			ı,	I	T	I	ı	ī		-	-	_	-	_	-			ı.	L	T	T	I.	ī		-	-	_	_	_	-			ı.	T	Т
Т	Т	ı.	·	-	-	_	_	-	-	•		Т	1	Т	Т	T		•	-	-	-	-	-	-	·	•	т	Т	Т	Т	Т	ı.	·	-	-	-	_	-	-	•	•	т	Т	Т
Т	Т	ı.		-	-	_	_	-	-	•		т	Т	Т	Т	1		-	-	-	-	-	-	-	·	•	т	Т	Т	Т	т			-	-	-	_	-	-	•	•	т	Т	Т
Т	Т	ı.	·	-	-	_	_	-	-	•		Т	Т	Т	Т	T		•	-	-	_	-	-	-	·		т	Т	Т	Т	Т	ı.	•	-	-	-	_	-	-	•		т	Т	Т
Т	Т	ı.		-	-	_	_	-	-			Т	Т	Т	Т	T			-	-	_	-	-	-			т	Т	Т	Т	Т			-	-	-	_	-	-			т	Т	Т
i.	Т	ı.		-	-	_	_	-	-			Т	Т	1	1	I			-	-	_	_	_	-			Т	L	I.	÷.	Т	ı.		-	-	_	_	_	-			т	Т	i.
Ì.	ı.	ı.		-	-	_	_	_	-			Т	1	Í.	Í.	ī			-	_	_	_	_	-			Т	I.	Í.	Ť.	ı.			-	_	_	_	_	-			т	I.	Ì.
Í.	i.	ı.		-	-	_	_	_	-			Т	÷.	Ĺ	i	i			-	_	_	_	_	-			Т	Ì.	Í.	Í.	i.			-	_	_	_	_	-			т	Ť.	Í.
i.	i.	ı.		-	-	_	_	_	-			ı	i.	i	i	i			-	_	_	_	_	-			ı.	i.	i	i	i.			-	_	_	_	_	-			ı	i.	i
i.	i	ı.		-	_	_	_	_	-			ı.	i	i	i	i			-	_	_	_	_	-			ı.	i	i.	÷.	i			-	_	_	_	_	-				i	i
i.	i			-	_	_	_	_	-			i	i	i	i	i			-	_	_	_	_	-			i.	i	i.	÷	i.			-	_	_	_	_	-			i.	i	i
i.	÷			-	_	_	_	_	_			i	÷	i	i	i			-	_	_	_	_	_			i.	i.	÷	÷	÷			-	_	_	_	_	_			i.	÷	i
i.	÷	i.		-	_	_	_	_	_			i	÷	i	i	÷	i.		-	_	_	_	_	-			i.	÷	÷	÷	÷	i.		-	_	_	_	_	_			i	÷	÷
÷.	÷	÷		-	_	_	_	_	_			÷	÷	÷	÷	÷	ì		-	_	_	_	_	_			÷	÷	÷	÷	÷	ì		-	_	_	_	_	_			÷	÷	÷
÷	÷	÷		-	_	_	_	_	_			÷	÷	÷	÷	÷	÷		-	_	_	_	_	_			÷	÷	÷	÷	÷	÷		-	_	_	_	_	_			÷	÷	÷
÷	÷	÷		-	_	_	_	_	_			÷	÷	÷	÷	÷			-	_	_	_	_	-			÷	÷	÷	÷	÷	÷		-	_	_	_	_	-			÷	÷	÷
÷	÷				_	_	_	_	_			-	÷	÷	-	÷			-	_	_	_	_	_			÷	÷	÷	÷	÷				_	_	_	_	_			÷	÷	÷
÷	÷	÷			_	_	_	_	_			÷	1	÷	÷	÷				_	_	_	_	_			÷	1	÷	÷	÷	÷			_	_	_	_	_			÷	1	÷
1	1	2			_	_	_	_	_				1	-	-	1			_	_	_			_			1	1	1	1	1	:		_	_	_	_	_	_			1	1	1
1	2	2		2	_	_	_	_	-			1	-	1	-	1			-	_			_	-			2	1	1	1	1	2		-	_	_	_	_	-			1	1	1
1	2	1	•	-	-	_	_	_	-	•		1	-	1	-	1		•	-	_		_	_	-	•		2	1	1	1	2	1	•	-	-	_	_	_	-	•		2	1	1
1	1	1		-	-	_	_	_	-	•	•	1	-	1	1	1		•	-	-	-			-	•		1	1	1	1	1	1	•	-	_	_	_	_	-	•		1	1	1
1	1		•	-	-	-	-	-	-	•	•		1	1				•	-	-	_	_	_	-	•	•	1	1	1	1			•	-	-	-	-	-	-	•	•		1	1

B-Mode Polarization Pattern

/	/	,		`	`	1	\mathbf{i}	`	`		,	1	1	/	1	,		`	1	\	\mathbf{i}	`	`		,	1	1	/	/	,		1	. \	1	1	、 .	,	1	1
/	/	,	÷	`	`	`	\mathbf{i}	`	`		,	1	/	/	/	,		`	`	1	1	1	`		,	1	/	/	/	/		`	. 丶	1	1	、 ・	,	1	1
/	/	,		`	\mathbf{i}	1	\mathbf{i}	>	`	-		1	/	/	/	/		`	`	1	\mathbf{i}	1	`	-		1	1	/	/	/	. 、	`	. \	\mathbf{i}	1	、 ・	,	1	1
/	/	,		`	>	1	>	`	`	-	,	1	/	1	/	/	-	`	1	1	1	`	`	-		1	1	1	/	/	. 、	`	. \	1	1	、 ・	,	1	1
/	/	,		`	>	1	\mathbf{i}	`	`		,	1	/	/	/	,		`	1	1	1	\mathbf{i}	`		,	1	/	/	/	/	. 、	`	. \	1	1	、 ・	,	1	1
/	/	,		`	`	\	\mathbf{i}	`	`		,	1	/	/	/	/		`	`	1	\mathbf{i}	\mathbf{i}	`		,	1	/	/	/	/		`	. \	1	1	、 ·	,	1	1
/	/	,		`	`	\	$\mathbf{\mathbf{k}}$	`	`		,	/	/	/	/	/		`	`	1	1	\mathbf{i}	`		,	1	/	/	1	/		1	. 丶	1	1	、 ·		1	/
/	/	,		`	`	1	\mathbf{i}	`	`		,	/	/	/	/	/		`	1	1	\mathbf{i}	\mathbf{i}	`		,	1	/	/	1	/		1	. \	\mathbf{i}	1	、 ・	,	1	1
/	/	,		`	>	\	\mathbf{i}	`	`		,	/	/	/	/	1		`	`	1	\mathbf{i}	\mathbf{i}	`	-	,	1	/	/	1	/		`	. \	1	1	、 ·	,	/	/
/	/	1	÷	`	`	\	\mathbf{i}	`	`	•	,	/	/	/	/	1	·	`	`	1	1	\mathbf{i}	`	•	,	/	/	/	/	/	•	`	. 丶	\sim	1	、 ・	,	/	/
/	/	1		`	`	\	\mathbf{i}	`	`	•	1	/	/	/	/	1		`	`	1	\mathbf{i}	\mathbf{i}	`	•		1	/	/	/	/		`	. \	\mathbf{X}	1	`		/	/
/	/	1	÷	`	`	\	>	`	`	•	1	/	/	/	/	1		`	\	1	1	\mathbf{i}	`	•	1	1	/	/	/	/	• •	`	. \	\mathbf{i}	1	`	1	/	/
/	/	1		`	`	\	\mathbf{i}	`	`	•	,	/	/	/	/	1		`	`	1	1	\mathbf{i}	`	•	1	/	/	/	/	/	•	`	. ヽ	1	1	`	,	/	/
/	/	1	·	`	`	\	\mathbf{i}	`	`	•	,	/	/	/	/	1	·	`	`	1	1	1	`	•	,	/	/	/	/	/	•	`	. \	. 丶	1	`	,	/	/
/	/	1		`	`	\	\mathbf{i}	`	`	•	,	/	/	/	/	1		`	\	1	1	$\mathbf{\mathbf{k}}$	`	•	1	/	/	/	/	/		`	. 丶	1	1	`	-	/	/
/	/	1	÷	`	`	\	`	`	`	•	1	/	/	/	/	1	·	`	١	1	1	\mathbf{i}	`	•	1	1	/	/	/	/	•	`	. 丶	`	1	`	-	/	/
/	/	1	÷	`	`	\	\mathbf{i}	`	`	•	,	/	/	/	/	1		`	`	1	1	\mathbf{i}	`	•	1	/	/	/	/	/	•	`	. \	`	1	`	'	/	/
/	/	1	·	`	`	1	>	`	`	•	•	/	/	/	/	1	·	`	`	1	1	`	`	•	1	/	/	/	/	1	•	`	. \	``	1	、 、	'	/	/
/	/	1		`	`	`	`	`	`	•	'	/	/	/	/	1		`	1	`	1	1	`	•	1	1	/	/	/	1	•		. \	``	1	•	'	/	/
/	/	1	·	`	`	\	`	`	`	•	1	/	/	/	/	1		`	1	1	1	`	`	•	1	/	/	/	/	/			. \	`	1	`	-	/	/
/	1	1	-	`	>	`	`	>	`	-	/	1	/	1	1	1	-	`	1	1	`	`	`	-	1	1	1	/	1	/		. `	. \	1	1	١	1	1	/

CMB Polarization

Polarization can be described as the sum of E-modes and B-modes.

Density fluctuations *cannot* make B-mode patterns.

A measurement of degree-scale Bmodes would be direct evidence for the gravitational wave background.

Search for B-modes

In simple inflationary gravitational wave models the

tensor-to-scalar ratio r

is the only parameter to the B-mode spectrum.

Until March 17 only upper limits

Best previous limit on r from BICEP1: r < 0.7 (95% CL)

Lensing deflects CMB photons, slightly mixing the dominant E-modes into Bmodes -- dominant at high multipoles

B-modes from the ground

- Deep, Concentrated coverage
- Foreground avoidance (limited frequency)
- Systematic control with in-situ calibration
- Large detector count, rapid technology cycle
- Relentless observing & large number of null tests

 \rightarrow powerful recipe for high-confidence initial discovery

BICEP2 Strategy: Unique Optics

Telescope as compact as possible while still having the angular resolution to observe degree-scale features (target the 2 degree peak of the Bmode)

On-axis, refractive optics allow the entire telescope to rotate around boresight for polarization modulation.

Liquid helium cools the optical elements to 4.2 K.

A 3-stage helium sorption refrigerator further cools the detectors to 0.27 K.

BICEP2 Strategy: **Revolutionary detectors**

JPL : antenna-coupled TES arrays

10

-10

-10

-5

BICEP1 48 150 GHz detectors

Mass-produced superconducting detectors

Transition edge sensor

Sensitivity through detector count increase

BICEP2 Observational Strategy

Target the "Southern Hole" - a region of the sky exceptionally free of dust and synchrotron foregrounds.

Detectors tuned to 150 GHz, near the peak of the CMB's 2.7 K blackbody spectrum.

At 150 GHz the combined dust and synchrotron spectrum is predicted to be at a minimum in the Southern Hole.

Expected foreground contamination of the B-mode power: $r \le \sim 0.01$.

BICEP2 Strategy: the South Pole

NSF's South Pole Station: A popular place with CMB Experimentalists!

Super dry atmosphere and 24h coverage of "Southern Hole". Also power, LHe, LN₂, 200 GB/day, 3 square meals,...

BICEP2 on the Sky

BICEP2 3-year Data Set

Angiola Orlando for The Bicep2 Collaboration

BICEP2 E- and B-mode Maps

The Bicep2 Collaboration

B-mode Map vs. Simulation

Simulation pipeline: generate realizations of the full observation and all filtering operations.

Compare real data to 500 lensed-ΛCDM+noise simulations each at various levels of *r*.

We perform various filtering operations: use the sims to correct for these.

Also use the sims to derive the final uncertainties (error bars)

BICEP2 B-mode Power Spectrum

Angiola Orlando for The Bicep2 Collaboration

Temperature and Polarization Power Spectra

Check Systematics: Jackknifes

TABLE 1 JACKKNIFE PTE VALUES FROM χ^2 and χ (sum-of-deviation) Tests

Jackknife	Bandpowers	Bandpowers	Bandpowers	Bandpowers	
	$1-5\chi^{2}$	$1-9\chi^{2}$	$1-5\chi$	$1-9\chi$	-
Deck jackk	nife				
EE	0.046	0.030	0.164	0.299	
BB	0.774	0.329	0.240	0.082	_/
EB	0.337	0.643	0.204	0.267	
Scan Dir ja	ckknife				/
EE	0.483	0.762	0.978	0.938	/
BB	0.531	0.573	0.896	0.551	
The Calls in	0.090	0.800	0.725	0.850	
Tag Spirt Ja	o 541	0.277	0.017	0.020	
RR	0.541	0.377	0.916	0.938	
EB	0.477	0.689	0.856	0.615	
Tile jackkn	ife				
EE	0.004	0.010	0.000	0.002	
BB	0.794	0.752	0.565	0.331	
EB	0.172	0.419	0.962	0.790	1
Phase jack	knife				1
EE	0.673	0.409	0.126	0.339	1
BB	0.591	0.739	0.842	0.944	
ED	0.529	0.577	0.840	0.039	1
Mux Col ja	ickknife				1
EE	0.812	0.587	0.196	0.204	
EB	0.826	0.972	0.295	0.285	
Alt Deck is	ckknife				
FE	0.004	0.004	0.070	0.236	
BB	0.397	0.176	0.381	0.086	
EB	0.150	0.060	0.170	0.291	
Mux Row j	ackknife				
EE	0.052	0.178	0.653	0.739	
BB	0.345	0.361	0.032	0.008	
EB	0.529	0.226	0.024	0.048	
Tile/Deck j	ackknife				
EE	0.048	0.088	0.144	0.132	
EB	0.908	0.840	0.591	0.209	
Eccal Plane	innar/outer inc	kknifa			
EE	0.220	0.507	0.022	0.000	
BB	0.230	0.531	0.046	0.092	
EB	0.036	0.042	0.850	0.838	
Tile top/bo	ttom jackknife				
EE	0.289	0.347	0.459	0.599	
BB	0.293	0.236	0.154	0.028	
EB	0.545	0.683	0.902	0.932	
Tile inner/o	outer jackknife				
EE	0.727	0.533	0.128	0.485	
EB	0.255	0.086	0.421	0.036	
Moon inclu	knifa				
EE	0.400	0.680	0.481	0.679	_ /
BB	0.499	0.089	0.481	0.858	1
EB	0.289	0.359	0.531	0.307	1
A/B offset	best/worst				/
EE	0.317	0.311	0.868	0.709	/
BB	0.114	0.064	0.307	0.094	
EB	0.589	0.872	0.599	0.790	

14 jackknife tests applied to 3 spectra, 4 statistics

All 4 jackknife statistics have uniform probability to exceed (PTE) distributions:

Check Systematics: Jackknifes

TABLE 1 JACKKNIFE PTE VALUES FROM χ^2 AND χ (sum-of-deviation) Tests

Jackknite	$1-5 \chi^2$	$1-9 \chi^2$	$1-5 \chi$	$1-9 \chi$	
Deck jackk	nife				
EE	0.046	0.030	0.164	0.299	
BB	0.774	0.329	0.240	0.082	
C.D.	abbaifa	0.045	0.204	0.207	
Scan Dir ja	0.482	0.762	0.078	0.029	
BB	0.485	0.762	0.978	0.958	
EB	0.898	0.806	0.725	0.890	
Tag Split ja	ıckknife				· _ /
EE	0.541	0.377	0.916	0.938	
BB	0.902	0.992	0.449	0.585	
Tile in shile	16-	0.005	0.000	0.015	
THE JACKKI	0.004	0.010	0.000	0.002	
RR	0.004	0.010	0.000	0.002	
EB	0.172	0.419	0.962	0.790	
Phase jackl	knife			· · · · · · · · · · · · · · · · · · ·	\sim /
EE	0.673	0.409	0.126	0.339	X
BB	0.591	0.739	0.842	0.944	
ED N	0.529	0.577	0.640	0.039	
Mux Col ja	ickknife	0.507	0.107	0.204	
BB	0.812	0.587	0.196	0.204	
EB	0.866	0.968	0.876	0.697	
Alt Deck ja	ickknife				
EE	0.004	0.004	0.070	0.236	
BB	0.397	0.176	0.381	0.086	
Mux Row i	iackknife	0.000	0.170	0.291	
EE	0.052	0.178	0.653	0.730	
BB	0.345	0.361	0.032	0.008	- //X
EB	0.529	0.226	0.024	0.048	
Tile/Deck j	ackknife				
EE	0.048	0.088	0.144	0.132	
EB	0.908	0.840	0.629	0.269	K /// /
Focal Plane	e inner/outer jac	kknife			X// /
EE	0.230	0 597	0.022	0.090	
BB	0.216	0.531	0.046	0.092	ΊΧ /
EB	0.036	0.042	0.850	0.838	$/ / \times /$
Tile top/bo	ttom jackknife				//X
EE	0.289	0.347	0.459	0.599	·/ /\
EB	0.293	0.236	0.154 0.902	0.028	
Tile inner/o	outer jackknife				
EE	0.727	0.533	0.128	0.485	
BB	0.255	0.086	0.421	0.036	
EB	0.465	0.737	0.208	0.168	
Moon jack	knife				
EE	0.499	0.689	0.481	0.679	
EB	0.144 0.289	0.287	0.898	0.858	
A/B offset	best/worst				
EE	0.317	0.311	0.868	0.709	
BB	0.114	0.064	0.307	0.094	
EB	0.589	0.872	0.599	0.790	

Splits the 4 boresight rotations

Amplifies differential pointing in comparison to fully added data. Important check of deprojection.

Splits by time

Checks for contamination on long ("Temporal Split") and short ("Scan Dir") timescales. Short timescales probe detector transfer functions.

Splits by channel selection

Checks for contamination in channel subgroups, divided by focal plane location, tile location, and readout electronics grouping

Splits by possible external contamination

Checks for contamination from ground-fixed signals, such as polarized sky or magnetic fields, or the moon

Splits to check intrinsic detector properties

Checks for contamination from detectors with best/ worst differential pointing. "Tile/dk" divides the data by the orientation of the detector on the sky.

Polarized Dust Foreground Projections

FDS Model

The BICEP2 region is chosen to have extremely low foreground emission.

Use various models of polarized dust emission to estimate foregrounds.

All dust auto spectra well below observed signal level.

Cross spectra consistent with zero.

Constraint on Tensor-to-scalar Ratio r

Conclusions

BICEP2 and upper limits from other experiments:

Consistent with expectations for **primordial** gravitational waves from GUT-scale inflation

Most sensitive polarization maps ever made

Power spectra perfectly consistent with lensed Λ CDM except: 5.2 σ excess in the B-mode spectrum at low multipoles (I~100)!

 7σ preference for non-zero r above lensed ΛCDM

Extensive studies and jackknife test strongly argue against systematics as the origin

Foregrounds do not appear to be a large fraction of the signal:

- \rightarrow foreground projections
 - lack of cross correlations
 - CMB-like spectral index
- → shape of the B-mode spectrum

Constraint on tensor-to-scalar ratio r in simple inflationary gravitational wave model:

 $r = 0.20^{+0.07}_{-0.05}$

What's Next?

Confirm:

- Keck Array 2012/13 results coming soon
- Planck may be able to confirm at either reionization (ell<10) or recombination (ell=80) bump.
- SPTpol has data over same sky patch at 100 and 150 GHz
 - Should be able to see signal alone and/or in cross correlation with BICEP2/Keck
- Keck 2014 running with two 100 GHz receivers will rapidly surpass BICEP1 100 GHz sensitivity.
- Polarbear, ACTpol, ABS running...
- EBEX has data... Spider will fly later this year... plus many others like LSPE (Italian Space Agency)

Refine:

- Need more sky/sensitivity to reduce uncertainty on r
- Need longer lever arm to measure tensor spectral index n_T
 - De-lense to push to higher ell
 - Full sky to push to lower ell